
BEAM Language Ecosystem
Past, Present and Future
Mariano Guerra - Robert Virding • 07.11.2020

Code BEAM Brasil

1

Co-creator of Erlang
LFE, Luerl, Erlog

Language Interop @ ErlEF

Co-founder @ Instadeq
Efene, Interfix, EFE

Language Interop @ ErlEF

2

o

State of the BEAM Language Ecosystem
LISP

● LFE

● Clojerl

● Joxa

Perl / Python / Ruby / Perl /
PHP

● Reia

● Elixir

● Efene

● EPHP

3

State of the BEAM Language Ecosystem
Rust / OCaml / SML / F#

● Alpaca

● Fez

● Gleam

● Caramel

Haskell / Elm

● Purerl

● Hamler

4

First Wave

1. Reia: reia-lang.org

2. Elixir

3. LFE

4. Efene

5

New Wave

1. Alpaca

2. Purerl

3. Gleam

4. Hamler

5. Whatsapp’s Typed Erlang?

6

Middle Road

Success / Progressive
Typing

1. Type Specs

2. Dialyzer

3. Whatsapp’s Typed Erlang?

7

Porting Existing Languages

8

Mechanical
Sympathy

1. Functional

2. Immutable

3. Eager Evaluation

“You don’t have to be an engineer to be a
racing driver, but you do have to have

Mechanical Sympathy.”

– Jackie Stewart, racing driver
9

Impedance
Mismatch

1. “Object Oriented”

2. Mutable

3. Lazy Evaluation

Impedance matching problem exists when
transferring sound energy from one medium to
another. If the acoustic impedance of the two
media are very different most energy will be

reflected (or absorbed), rather than transferred
across 10

o

“OOP to me means only messaging,
local retention and protection and

hiding of state-process, and extreme
late-binding of all things”

-- Alan Kay

11

o

Languages inspired by existing ones
but playing to the BEAM strengths

tend to work better

12

Happens on other platforms too

JVM: Scala, Clojure*, Kotlin, Groovy

.NET: F#, Clojure*

Javascript: Typescript, Clojurescript*

13

The Uncanny Valley of Compatibility

14

o

Language Design / Implementation Tradeoffs

15

Case: Elixir

16

Designing a Common Lisp inspired
programming language

17

Porting a mutable dynamically typed language

18

Porting a logical programming language

Erlog

19

How much is shared across languages?

20

o

● Lexer
● Pre Processor: includes, macros

● Parser: absform / AST
● Core Erlang
● Kernel Erlang

● SSA

● Codegen
21

Streams

Trees

Graph

Stream

Elixir Flavoured Erlang

github.com/marianoguerra/efe
 github.com/marianoguerra/otp.ex

22

23

gen_server:castlists:sort

https://github.com/marianoguerra/otp.ex/blob/9bf20d7d523117110ebe81ada096e12a50367b07/otp/lib/stdlib/src/gen_server.ex#L80
https://github.com/marianoguerra/otp.ex/blob/9bf20d7d523117110ebe81ada096e12a50367b07/otp/lib/stdlib/src/lists.ex#L354

Interoperability
Challenges

1. Records / Structs

2. Sum Types

3. Namespaces / Modules

4. Naming Conventions

5. Statically Typed Languages
calling Dynamically Typed Code

6. Code Dependencies across
Languages

 “There are only two kinds of languages: the
ones people complain about and the ones

nobody uses.”

― Bjarne Stroustrup, C++ Creator
24

o

The Future

1. Polyglot Projects

2. Minimal Interop Friction

3. BEAM as the obvious choice
for languages / systems
research

 "The best way to predict the future is to create it."

25

o

🐦 @rvirding 🐦 @warianoguerra

26

Typing Message Passing

27

Interoperability and Backward Compatibility

28

Why not add some mutability to the BEAM

29

