
cosEvent
Copyright © 1999-2017 Ericsson AB. All Rights Reserved.

cosEvent 2.2.1
March 10, 2017

Copyright © 1999-2017 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 10, 2017

1.1 The cosEvent Application

1 cosEvent User's Guide

The cosEvent application is an Erlang implementation of a CORBA Service CosEvent.

1.1 The cosEvent Application
1.1.1 Content Overview
The cosEvent documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the cosEvent Application including services and a small tutorial demonstrating the development
of a simple service.

• PART TWO - Release Notes
A concise history of cosEvent.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosEvent.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

• CosEvent overview

• CosEvent installation and examples

1.2 Introduction to cosEvent
1.2.1 Overview
The cosEvent application is a Event Service compliant with the OMG Event Service CosEvent.

Purpose and Dependencies
CosEvent is dependent on Orber, which provides CORBA functionality in an Erlang environment.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It is also helpful to have read Concurrent Programming in Erlang.

Ericsson AB. All Rights Reserved.: cosEvent | 1

href

1.3 Event Service

1.3 Event Service
1.3.1 Overview of the CosEvent Service
The Event service allows programmers to subscribe to information channels. Suppliers can generate events without
knowing the consumer identities and the consumer can receive events without knowing the supplier identity. Both
push and pull event delivery are supported. The Event service will queue information and processes.

The CORBA Event service provides a flexible model for asynchronous, decoupled communication between objects.
This chapter outlines communication models and the roles and relationships of key components in the CosEvent
service. It shows a simple example on use of this service.

1.3.2 Event Service Components
There are five components in the OMG CosEvent service architecture. These are described below:

Figure 3.1: Figure 1: Event service Components

• Suppliers and consumers: Consumers are the ultimate targets of events generated by suppliers. Consumers
and suppliers can both play active and passive roles. There could be two types of consumers and suppliers:
push or pull. A PushSupplier object can actively push an event to a passive PushConsumer object. Likewise, a
PullSupplier object can passively wait for a PullConsumer object to actively pull an event from it.

• EventChannel: The central abstraction in the CosEvent service is the EventChannel which plays the role
of a mediator between consumers and suppliers. Consumers and suppliers register their interest with the
EventChannel. It can provide many-to-many communication. The channel consumes events from one or
more suppliers, and supplies events to one or more consumers. An EventChannel can support consumers and
suppliers using different communication models.

• ProxySuppliers and ProxyConsumers: ProxySuppliers act as middlemen between consumers and the
EventChannel. A ProxySupplier is similar to a normal supplier, but includes an additional method for
connecting a consumer to the ProxySupplier. Likewise, ProxyConsumers act as middlemen between suppliers
and the EventChannel. A ProxyConsumer is similar to a normal consumer, but includes an additional method
for connecting a supplier to the ProxyConsumer.

• Supplier and consumer administrations: Consumer administration acts as a factory for creating
ProxySuppliers. Supplier administration acts as a factory for creating ProxyConsumers.

1.3.3 Event Service Communication Models
There are four general models of component collaboration in the OMG CosEvent service architecture. The following
describes these models: (Please note that proxies are not shown in the diagrams for simplicity).

Figure 3.2: Figure 2: Event service Communication Models

• The Canonical Push Model: The Canonical push model shown in figure 2(A) allows the suppliers of events
to initiate the transfer of event data to consumers. In this model, suppliers are active initiators and consumers
are the passive targets of the requests. EventChannels play the role of Notifier. Thus, active suppliers use
EventChannels to push data to passive consumers that have registered with the EventChannels.

• The Canonical Pull Model:The Canonical pull model shown in figure 2(B) allows consumers to request events
from suppliers. In this model, Consumers are active initiators and suppliers are the passive targets of the pull
requests. EventChannel plays the role of Procurer since it procures events on behalf of consumers. Thus,
active consumers can explicitly pull data from passive suppliers via the EventChannels.

2 | Ericsson AB. All Rights Reserved.: cosEvent

1.3 Event Service

• The Hybrid Push/Pull Model: The push/pull model shown in figure 2(C) is a hybrid that allows consumers to
request events queued at an EventChannel by suppliers. In this model, both suppliers and consumers are active
initiators of the requests. EventChannels play the role of Queue. Thus, active consumers can explicitly pull
data deposited by active suppliers via the EventChannels.

• The Hybrid Pull/Push Model: The pull/push model shown in figure 2(D) is another hybrid that allows the
channel to pull events from suppliers and push them to consumers. In this model, suppliers are passive targets
of pull requests and consumers are passive targets of pushes. EventChannels play the role of Intelligent
Agent. Thus, active EventChannels can pull data from passive suppliers and push that data to passive
consumers.

1.3.4 A Tutorial on How to Create a Simple Service
To be able to use the cosEvent application supplier and consumer objects must be implemented, which must inherit
from the appropriate interface defined in the CosEventComm.idl specification.

We start by creating an interface which inherits from the correct interface, e.g., CosEventComm::PushConsumer.
Hence, we must also implement all operations defined in the PushConsumer interface. The IDL-file could look like:

#ifndef _MYCLIENT_IDL
#define _MYCLIENT_IDL
#include <CosEventComm.idl>

module myClientImpl {

 interface ownInterface:CosEventComm::PushConsumer {

 void ownFunctions(in any NeededArguments)
 raises(OwnExceptions);

 };
};

#endif

Run the IDL compiler on this file by calling the ic:gen/1 function. This will produce the API named
myClientImpl_ownInterface.erl. After generating the API stubs and the server skeletons it is
time to implement the servers and if no special options are sent to the IDl compiler the file name is
myClientImpl_ownInterface_impl.erl.

1.3.5 How to Run Everything
Below is a short transcript on how to run cosEvent.

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% Install cosEvent in the IFR.
cosEventApp:install(),

%% Register the application specific Client implementations

Ericsson AB. All Rights Reserved.: cosEvent | 3

1.3 Event Service

%% in the IFR.
'oe_myClientImpl':'oe_register'(),

%% Start the cosEvent application.
cosEventApp:start(),

%% Start a channel using the default configuration
Ch = cosEventApp:start_channel(),
%% ... or use configuration parameters.
Ch = cosEventApp:start_channel([{pull_interval, 10}, {maxEvents, 50}]),

%% Retrieve a SupplierAdmin and a ConsumerAdmin.
AdminSupplier = 'CosEventChannelAdmin_EventChannel':for_suppliers(Ch),
AdminConsumer = 'CosEventChannelAdmin_EventChannel':for_consumers(Ch),

%% Use the corresponding Admin object to get access to wanted Proxies

%% Create a Push Consumer Proxy, which the Client Push Supplier will push
%% events to.
ProxyPushConsumer =
 'CosEventChannelAdmin_SupplierAdmin':obtain_push_consumer(AdminSupplier),

%% Create a Push Supplier Proxy, which will push events to the registered
%% Push Consumer.
ProxyPushSupplier =
 'CosEventChannelAdmin_ConsumerAdmin':obtain_push_supplier(AdminConsumer),

%% Create application Clients. We can, for example, start the Clients
%% our selves or look them up in the naming service. This is application
%% specific.
Consumer = myClientImpl_ownInterface:oe_create(),
Supplier = ...

%% Connect each Client to the corresponding Proxy.
'CosEventChannelAdmin_ProxyPushConsumer':
 connect_push_supplier(ProxyPushConsumer, Supplier),
'CosEventChannelAdmin_ProxyPushSupplier':
 connect_push_consumer(ProxyPushSupplier, Consumer),

The example above, exemplifies a event system, i.e., the Canonical Push Model, where the Supplier client in some
way generates event and pushes them to the proxy. The push supplier proxies will eventually push the events to each
Consumer client.

4 | Ericsson AB. All Rights Reserved.: cosEvent

1.3 Event Service

2 Reference Manual

The cosEvent application is an Erlang implementation of a CORBA Service CosEvent.

Ericsson AB. All Rights Reserved.: cosEvent | 5

cosEventApp

cosEventApp
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosEvent/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {'EXCEPTION', E} | {'EXIT', R}

This operation installs the cosEvent application.

uninstall() -> Return
Types:

Return = ok | {'EXCEPTION', E} | {'EXIT', R}

This operation uninstalls the cosEvent application.

start() -> Return
Types:

Return = ok | {error, Reason}

This operation starts the cosEvent application.

stop() -> Return
Types:

Return = ok | {error, Reason}

This operation stops the cosEvent application.

start_channel() -> Channel
Types:

Channel = #objref

This operation creates a new instance of a Event Channel using the default settings.

start_channel(Options) -> Channel
Types:

Options = [Option]

Option = {pull_interval, Seconds} | {typecheck, Boolean} | {maxEvents,
Integer} | {blocking, Boolean}

Channel = #objref

This operation creates a new instance of a Event Channel

6 | Ericsson AB. All Rights Reserved.: cosEvent

cosEventApp

• {pull_interval, Seconds} - determine how often Proxy Pull Consumers will check for new events
with the client application. The default value is 20 seconds.

• {typecheck, Boolean} - if this option is set to true the proxies will check if the supplied client object is
of correct type. The default value is false.

• {maxEvents, Integer} - this option determine how many events the ProxyPullSuppliers will
store before discarding events. If the limit is reached events will be discarded in any order. The default value is
300.

• {blocking, Boolean} - this option determine the behavior of the channel when handling events
internally. If set to true the risk of a single event supplier floods the system is reduced, but the performance
may also be reduced. The default value is true.

start_channel_link() -> Channel
Types:

Channel = #objref

This operation creates a new instance of a Event Channel, which is linked to the invoking process, using the default
settings.

start_channel_link(Options) -> Channel
Types:

Options = [Option]

Option = {pull_interval, Seconds} | {typecheck, Boolean} | {maxEvents,
Integer} | {blocking, Boolean}

Channel = #objref

This operation creates a new instance of a Event Channel, which is linked to the invoking process, with settings defined
by the given options. Allowed options are the same as for cosEventApp:start_channel/1.

stop_channel(Channel) -> Reply
Types:

Channel = #objref

Reply = ok | {'EXCEPTION', E}

This operation stop the target event channel.

Ericsson AB. All Rights Reserved.: cosEvent | 7

CosEventChannelAdmin

CosEventChannelAdmin
Erlang module

The event service defines two roles for objects: the supplier role and the consumer role. Suppliers supply event data
to the event channel and consumers receive event data from the channel. Suppliers do not need to know the identity
of the consumers, and vice versa. Consumers and suppliers are connected to the event channel via proxies, which are
managed by ConsumerAdmin and SupplierAdmin objects.

There are four general models of communication. These are:

• The canonical push model. It allows the suppliers of events to initiate the transfer of event data to consumers.
Event channels play the role of Notifier. Active suppliers use event channel to push data to passive
consumers registered with the event channel.

• The canonical pull model. It allows consumers to request events from suppliers. Event channels play the role
of Procure since they procure events on behalf of consumers. Active consumers can explicitly pull data from
passive suppliers via the event channels.

• The hybrid push/pull model. It allows consumers request events queued at a channel by suppliers. Event
channels play the role of Queue. Active consumers explicitly pull data deposited by active suppliers via the
event channels.

• The hybrid pull/push model. It allows the channel to pull events from suppliers and push them to consumers.
Event channels play the role of Intelligent agent. Active event channels can pull data from passive
suppliers to push it to passive consumers.

To get access to all definitions, e.g., exceptions, include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

There are seven different interfaces supported in the service:

• ProxyPushConsumer

• ProxyPullSupplier

• ProxyPullConsumer

• ProxyPushSupplier

• ConsumerAdmin

• SupplierAdmin

• EventChannel

8 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_ConsumerAdmin

CosEventChannelAdmin_ConsumerAdmin
Erlang module

The ConsumerAdmin interface defines the first step for connecting consumers to the event channel. It acts as a factory
for creating proxy suppliers. Both consumer administration and supplier administration are defined as separate objects
so that the creator of the channel can control the addition of suppliers and consumers.

To get access to all definitions include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Exports

obtain_push_supplier(Object) -> Return
Types:

Object = #objref

Return = #objref

This operation returns a ProxyPushSupplier object reference.

obtain_pull_supplier(Object) -> Return
Types:

Object = #objref

Return = #objref

This operation returns a ProxyPullSupplier object reference.

Ericsson AB. All Rights Reserved.: cosEvent | 9

CosEventChannelAdmin_SupplierAdmin

CosEventChannelAdmin_SupplierAdmin
Erlang module

The SupplierAdmin interface defines the first step for connecting suppliers to the event channel. It acts as a factory for
creating proxy consumers. Both consumer administration and supplier administration are defined as separate objects
so that the creator of the channel can control the addition of suppliers and consumers.

To get access to all definitions include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Exports

obtain_push_consumer(Object) -> Return
Types:

Object = #objref

Return = #objref

This operation returns a ProxyPushConsumer object reference.

obtain_pull_consumer(Object) -> Return
Types:

Object = #objref

Return = #objref

This operation returns a ProxyPullConsumer object reference.

10 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_EventChannel

CosEventChannelAdmin_EventChannel
Erlang module

An event channel is an object that allows multiple suppliers to communicate with multiple consumers in a highly
decoupled, asynchronous manner. The event channel is built up incrementally. When an event channel is created
no suppliers or consumers are connected to it. Event Channel can implement group communication by serving as a
replicator, broadcaster, or multicaster that forward events from one or more suppliers to multiple consumers.

It is up to the user to decide when an event channel is created and how references to the event channel are obtained.
By representing the event channel as an object, it has all of the properties that apply to objects. One way to manage
an event channel is to register it in a naming context, or export it through an operation on an object.

To get access to all definitions include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPullConsumer interface can perform the following
operations:

Exports

for_consumers(Object) -> Return
Types:

Object = #objref

Return = #objref

This operation returns a ConsumerAdmin object reference. If ConsumerAdmin object does not exist already it creates
one.

for_suppliers(Object) -> Return
Types:

Object = #objref

Return = #objref

This operation returns a SupplierAdmin object reference. If SupplierAdmin object does not exist already it creates one.

destroy(Object) -> Return
Types:

Object = #objref

Return = #objref

Ericsson AB. All Rights Reserved.: cosEvent | 11

CosEventChannelAdmin_ProxyPullConsumer

CosEventChannelAdmin_ProxyPullConsumer
Erlang module

The ProxyPullConsumer interface defines the second step for connecting pull suppliers to the event channel. A proxy
consumer is similar to a normal consumer, but includes an additional method for connecting a supplier to the proxy
consumer.

To get access to all definitions, e.g., exceptions, include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPullConsumer interface can perform the following
operations:

Exports

connect_pull_supplier(Object, PullSupplier) -> Return
Types:

Object = #objref

PullSupplier = #objref of PullSupplier type

Return = ok | {'EXCEPTION', E}

E = #'CosEventChannelAdmin_AlreadyConnected'{} |
#'CosEventChannelAdmin_TypeError'{}

This operation connects PullSupplier object to the ProxyPullConsumer object. If a nil object reference is
passed CORBA standard BAD_PARAM exception is raised. If the ProxyPullConsumer is already connected to a
PullSupplier, then the CosEventChannelAdmin_AlreadyConnected exception is raised. Implementations
of ProxyPullConsumers may require additional interface functionality; if these requirements are not met the
CosEventChannelAdmin_TypeError exception will be raised.

disconnect_pull_consumer(Object) -> Return
Types:

Object = #objref

Return = ok

This operation disconnects proxy pull consumer from the event channel and sends a notification about the loss of the
connection to the pull supplier attached to it.

12 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_ProxyPushConsumer

CosEventChannelAdmin_ProxyPushConsumer
Erlang module

The ProxyPushConsumer interface defines the second step for connecting push suppliers to the event channel. A proxy
consumer is similar to a normal consumer, but includes an additional method for connecting a supplier to the proxy
consumer.

To get access to all definitions, e.g., exceptions, include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPushConsumer interface can perform the
following operations:

Exports

connect_push_supplier(Object, PushSupplier) -> Return
Types:

Object = #objref

PushSupplier = #objref of PushSupplier type

Return = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects PushSupplier object to the ProxyPushConsumer object. A nil object reference can be passed
to this operation. If so a channel cannot invoke the disconnect_push_supplier operation on the supplier; the supplier
may be disconnected from the channel without being informed. If the ProxyPushConsumer is already connected to a
PushSupplier, then the CosEventChannelAdmin_AlreadyConnected exception is raised.

disconnect_push_consumer(Object) -> Return
Types:

Object = #objref

Return = ok

This operation disconnects proxy push consumer from the event channel. Sends a notification about the loss of the
connection to the push supplier attached to it, unless nil object reference was passed at the connection time.

push(Object, Data) -> Return
Types:

Object = #objref

Data = any

Return = ok | {'EXCEPTION', #'CosEventComm_Disconnected'{}}

This operation sends event data to all connected consumers via the event channel. If the event communication has
already been disconnected, the CosEventComm_Disconnected is raised.

Ericsson AB. All Rights Reserved.: cosEvent | 13

CosEventChannelAdmin_ProxyPullSupplier

CosEventChannelAdmin_ProxyPullSupplier
Erlang module

The ProxyPullSupplier interface defines the second step for connecting pull consumers to the event channel. A proxy
supplier is similar to a normal supplier, but includes an additional method for connecting a consumer to the proxy
supplier.

To get access to all definitions, e.g., exceptions, include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPullSupplier interface can perform the following
operations:

Exports

connect_pull_consumer(Object, PullConsumer) -> Return
Types:

Object = #objref

PullConsumer = #objref of PullConsumer type

Return = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects PullConsumer object to the ProxyPullSupplier object. A nil object reference can be passed to
this operation. If so a channel cannot invoke the disconnect_pull_consumer operation on the consumer; the consumer
may be disconnected from the channel without being informed. If the ProxyPullSupplier is already connected to a
PullConsumer, then the CosEventChannelAdmin_AlreadyConnected exception is raised.

disconnect_pull_supplier(Object) -> Return
Types:

Object = #objref

Return = ok

This operation disconnects proxy pull supplier from the event channel. It sends a notification about the loss of the
connection to the pull consumer attached to it, unless nil object reference was passed at the connection time.

pull(Object) -> Return
Types:

Object = #objref

Return = any

This operation blocks until the event data is available or the CosEventComm_Disconnected exception is raised.
It returns the event data to the consumer.

try_pull(Object) -> Return
Types:

Object = #objref

Return = {any, bool()}

14 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_ProxyPullSupplier

This operation does not block: if the event data is available, it returns the event data and sets the data availability
flag to true; otherwise it returns a long with an undefined value and sets the data availability to false. If the event
communication has already been disconnected, the CosEventComm_Disconnected exception is raised.

Ericsson AB. All Rights Reserved.: cosEvent | 15

CosEventChannelAdmin_ProxyPushSupplier

CosEventChannelAdmin_ProxyPushSupplier
Erlang module

The ProxyPushSupplier interface defines the second step for connecting push consumers to the event channel. A proxy
supplier is similar to a normal supplier, but includes an additional method for connecting a consumer to the proxy
supplier.

To get access to all definitions, e.g., exceptions, include necessary hrl files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPushSupplier interface can perform the following
operations:

Exports

connect_push_consumer(Object, PushConsumer) -> Return
Types:

Object = #objref

PushConsumer = #objref of PushConsumer type

Return = ok | {'EXCEPTION', E}

E = #'CosEventChannelAdmin_AlreadyConnected'{} |
#'CosEventChannelAdmin_TypeError'{}

This operation connects PushConsumer object to the ProxyPushSupplier object. If a nil object reference is
passed CORBA standard BAD_PARAM exception is raised. If the ProxyPushSupplier is already connected to a
PushConsumer, then the CosEventChannelAdmin_AlreadyConnected exception is raised. Implementations
of ProxyPushSuppliers may require additional interface functionality; if these requirements are not met the
CosEventChannelAdmin_TypeError exception will be raised.

disconnect_push_supplier(Object) -> Return
Types:

Object = #objref

Return = ok

This operation disconnects proxy push supplier from the event channel and sends a notification about the loss of the
connection to the push consumer attached to it.

16 | Ericsson AB. All Rights Reserved.: cosEvent

	cosEvent
	cosEvent User's Guide
	The cosEvent Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosEvent
	Overview
	Purpose and Dependencies
	Prerequisites

	Event Service
	Overview of the CosEvent Service
	Event Service Components
	Event Service Communication Models
	A Tutorial on How to Create a Simple Service
	How to Run Everything

	Reference Manual
	cosEventApp
	install/0
	uninstall/0
	start/0
	stop/0
	start_channel/0
	start_channel/1
	start_channel_link/0
	start_channel_link/1
	stop_channel/1

	CosEventChannelAdmin
	CosEventChannelAdmin_ConsumerAdmin
	obtain_push_supplier/1
	obtain_pull_supplier/1

	CosEventChannelAdmin_SupplierAdmin
	obtain_push_consumer/1
	obtain_pull_consumer/1

	CosEventChannelAdmin_EventChannel
	for_consumers/1
	for_suppliers/1
	destroy/1

	CosEventChannelAdmin_ProxyPullConsumer
	connect_pull_supplier/2
	disconnect_pull_consumer/1

	CosEventChannelAdmin_ProxyPushConsumer
	connect_push_supplier/2
	disconnect_push_consumer/1
	push/2

	CosEventChannelAdmin_ProxyPullSupplier
	connect_pull_consumer/2
	disconnect_pull_supplier/1
	pull/1
	try_pull/1

	CosEventChannelAdmin_ProxyPushSupplier
	connect_push_consumer/2
	disconnect_push_supplier/1

